@stdlib/stats-base-dists-gumbel-quantile v0.2.2
Quantile Function
Gumbel distribution quantile function.
The quantile function for a Gumbel random variable is
for 0 <= p < 1, where mu is the location parameter and beta > 0 is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-gumbel-quantileUsage
var quantile = require( '@stdlib/stats-base-dists-gumbel-quantile' );quantile( p, mu, beta )
Evaluates the quantile function for a Gumbel distribution with parameters mu (location parameter) and beta (scale parameter).
var y = quantile( 0.8, 0.0, 1.0 );
// returns ~1.5
y = quantile( 0.5, 4.0, 2.0 );
// returns ~4.733
y = quantile( 0.5, 4.0, 4.0 );
// returns ~5.466If provided a probability p outside the interval [0,1], the function returns NaN.
var y = quantile( 1.9, 0.0, 1.0 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0 );
// returns NaNIf provided NaN as any argument, the function returns NaN.
var y = quantile( NaN, 0.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 0.0, NaN );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = quantile( 0.4, 0.0, -1.0 );
// returns NaN
y = quantile( 0.4, 0.0, 0.0 );
// returns NaNquantile.factory( mu, beta )
Returns a function for evaluating the quantile function of a Gumbel distribution with parameters mu and beta.
var myquantile = quantile.factory( 10.0, 2.0 );
var y = myquantile( 0.2 );
// returns ~9.048
y = myquantile( 0.8 );
// returns ~13.00Examples
var randu = require( '@stdlib/random-base-randu' );
var quantile = require( '@stdlib/stats-base-dists-gumbel-quantile' );
var beta;
var mu;
var p;
var y;
var i;
for ( i = 0; i < 100; i++ ) {
p = randu();
mu = randu() * 10.0;
beta = randu() * 10.0;
y = quantile( p, mu, beta );
console.log( 'p: %d, µ: %d, β: %d, Q(p;µ,β): %d', p.toFixed( 4 ), mu.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.