@stdlib/stats-base-dists-normal-logpdf v0.2.2
Logarithm of Probability Density Function
Evaluate the natural logarithm of the probability density function (PDF) for a normal distribution.
The probability density function (PDF) for a normal random variable is
where µ is the mean and σ is the standard deviation.
Installation
npm install @stdlib/stats-base-dists-normal-logpdfUsage
var logpdf = require( '@stdlib/stats-base-dists-normal-logpdf' );logpdf( x, mu, sigma )
Evaluates the natural logarithm of the probability density function (PDF) for a normal distribution with parameters mu (mean) and sigma (standard deviation).
var y = logpdf( 2.0, 0.0, 1.0 );
// returns ~-2.919
y = logpdf( -1.0, 4.0, 2.0 );
// returns ~-4.737If provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaNIf provided sigma < 0, the function returns NaN.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaNIf provided sigma = 0, the function evaluates the natural logarithm of the PDF of a degenerate distribution centered at mu.
var y = logpdf( 2.0, 8.0, 0.0 );
// returns -Infinity
y = logpdf( 8.0, 8.0, 0.0 );
// returns Infinitylogpdf.factory( mu, sigma )
Returns a function for evaluating the probability density function (PDF) of a normal distribution with parameters mu (mean) and sigma (standard deviation).
var mylogpdf = logpdf.factory( 10.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-1.612
y = mylogpdf( 5.0 );
// returns ~-4.737Examples
var randu = require( '@stdlib/random-base-randu' );
var logpdf = require( '@stdlib/stats-base-dists-normal-logpdf' );
var sigma;
var mu;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    mu = (randu() * 10.0) - 5.0;
    sigma = randu() * 20.0;
    y = logpdf( x, mu, sigma );
    console.log( 'x: %d, µ: %d, σ: %d, ln(f(x;µ,σ)): %d', x, mu, sigma, y );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.