1.10.5 • Published 4 months ago

@tricoteuses/assemblee v1.10.5

Weekly downloads
119
License
AGPL-3.0-or-later
Repository
-
Last release
4 months ago

Tricoteuses-Assemblee

Retrieve, clean up & handle French Assemblée nationale's open data

Requirements

  • Node >= 18

Installation

git clone https://git.en-root.org/tricoteuses/tricoteuses-assemblee
cd tricoteuses-assemblee/
npm install

Download and clean data

Basic usage

Create a folder where the data will be downloaded and run the following command to download, reorganize and clean the data.

mkdir ../assemblee-data/

# Download and clean open data
npm run data:download ../assemblee-data

Data from other sources is also available :

# Retrieval of députés' pictures from Assemblée nationale's website
npm run data:retrieve_deputes_photos ../assemblee-data

# Retrieval of sénateurs' pictures from Assemblée nationale's website
npm run data:retrieve_senateurs_photos ../assemblee-data

# Retrieval of pending amendments from Assemblée nationale's website (waiting to be processed by Assemblée services)
npm run data:retrieve_pending_amendements ../assemblee-data

Notes:

Filtering options

Downloading and cleaning all the data is long and takes up a lot of disk space. It is possible to choose the type of data that you want to retrieve to reduce the load.

To download only a type of dataset, use the --categories option (shortcut -k) :

# Available options : ActeursEtOrganes, Agendas, Amendements, DossiersLegislatifs, Photos, Scrutins, Questions, ComptesRendusSeances
npm run data:download ../assemblee-data -- --categories Amendements

To download only a specific legislature, use the --legislature option (shortcut -l):

# Available options : 14, 15, 16, 17
npm run data:download ../assemblee-data -- --legislature 17

If you use such options, use them in all subsequent commands too (data:regorganize_data and data:clean_data).

Download using Docker

A Docker image that downloads and cleans the data all at once is available. Build it locally or pull it from the container registry :

docker pull registry.en-root.org/tricoteuses/tricoteuses-assemblee:latest

Create a volume to download the data and use the environment variables LEGISLATURE and CATEGORIES if needed :

docker volume create assemblee-data
docker run --name tricoteuses-assemblee -v assemblee-data:/app/assemblee -e LEGISLATURE=17 -d registry.en-root.org/tricoteuses/tricoteuses-assemblee:latest

Using the data

Once the data is downloaded and cleaned, you can use loaders to retrieve it. To use loaders in your project, you can install the @tricoteuses/assemblee package, and import the iterator functions that you need.

npm install @tricoteuses/assemblee
import {
  iterLoadAssembleeActeurs,
  iterLoadAssembleeOrganes,
  iterLoadAssembleeReunions,
  iterLoadAssembleeScrutins,
  iterLoadAssembleeDocuments,
  iterLoadAssembleeDossiersParlementaires,
  iterLoadAssembleeAmendements,
  iterLoadAssembleeQuestions,
  iterLoadAssembleeComptesRendus,
} from "@tricoteuses/assemblee/lib/loaders";

// Pass data directory and legislature as arguments
for (const { acteur } of iterLoadAssembleeActeurs("../assemblee-data", 17)) {
  console.log(acteur.uid)
}

Generating schemas and documentation (for contributors only)

View instructions here

1.10.5

4 months ago

1.10.4

5 months ago

1.10.3

5 months ago

1.10.2

7 months ago

1.10.1

7 months ago

1.10.0

7 months ago

1.9.13

8 months ago

1.9.12

9 months ago

1.9.11

9 months ago

1.9.10

9 months ago

1.9.9

9 months ago

1.9.8

9 months ago

1.9.1

9 months ago

1.9.0

9 months ago

1.9.7

9 months ago

1.9.6

9 months ago

1.9.4

9 months ago

1.9.3

9 months ago

1.9.2

9 months ago

1.7.5

1 year ago

1.7.4

1 year ago

1.8.0

1 year ago

1.7.3

1 year ago

1.7.2

1 year ago

1.7.1

1 year ago

1.6.1

1 year ago

1.7.0

1 year ago

1.6.0

1 year ago

1.5.7

1 year ago

1.5.5

1 year ago

1.5.6

1 year ago

1.5.4

1 year ago

1.5.3

1 year ago

1.5.2

2 years ago

1.5.1

2 years ago

1.5.0

2 years ago

1.2.6

2 years ago

1.2.5

2 years ago

1.2.4

2 years ago

1.2.3

2 years ago

1.2.2

2 years ago

1.2.1

2 years ago

1.4.0

2 years ago

1.3.1

2 years ago

1.3.0

2 years ago

1.2.0

2 years ago

1.1.12

2 years ago

1.1.11

2 years ago

1.1.10

2 years ago

1.1.9

2 years ago

1.1.8

2 years ago

1.1.7

2 years ago

1.1.6

2 years ago

1.1.5

2 years ago

1.1.4

2 years ago

1.1.3

3 years ago

1.1.1

3 years ago

1.1.0

3 years ago

1.1.2

3 years ago

1.0.7

3 years ago

1.0.6

3 years ago

1.0.5

3 years ago

1.0.4

3 years ago

0.29.9

3 years ago

0.29.0

3 years ago

0.29.8

3 years ago

0.29.7

3 years ago

0.29.6

3 years ago

0.29.5

3 years ago

0.29.4

3 years ago

0.29.3

3 years ago

0.29.2

3 years ago

0.29.1

3 years ago

1.0.2

3 years ago

1.0.1

3 years ago

1.0.0

3 years ago

1.0.3

3 years ago

0.29.12

3 years ago

0.29.13

3 years ago

0.29.10

3 years ago

0.29.11

3 years ago

1.0.0-next.1

3 years ago

1.0.0-next.2

3 years ago

0.28.1

3 years ago

0.28.3

3 years ago

0.28.2

3 years ago

0.26.2

3 years ago

0.26.1

3 years ago

0.27.0

3 years ago

0.28.0

3 years ago

0.25.4

4 years ago

0.25.3

4 years ago

0.26.0

4 years ago

0.25.2

4 years ago

0.25.1

4 years ago

0.25.0

4 years ago

0.24.1

4 years ago

0.24.0

4 years ago

0.23.0

4 years ago

0.22.15

4 years ago

0.22.14

4 years ago

0.22.12

4 years ago

0.22.13

4 years ago

0.22.11

4 years ago

0.22.10

4 years ago

0.22.6

4 years ago

0.22.5

4 years ago

0.22.4

4 years ago

0.22.9

4 years ago

0.22.8

4 years ago

0.22.3

4 years ago

0.22.2

4 years ago

0.22.1

4 years ago

0.22.0

4 years ago

0.21.10

4 years ago

0.21.8

4 years ago

0.21.7

4 years ago

0.21.6

4 years ago

0.21.5

4 years ago

0.21.4

4 years ago

0.21.3

4 years ago

0.21.2

4 years ago

0.21.1

4 years ago

0.21.9

4 years ago

0.19.7

4 years ago

0.21.0

4 years ago

0.19.6

4 years ago

0.19.5

4 years ago

0.19.1

4 years ago

0.19.2

4 years ago

0.19.3

4 years ago

0.19.4

4 years ago

0.19.0

4 years ago

0.18.1

4 years ago

0.18.0

4 years ago

0.17.9

4 years ago

0.17.7

4 years ago

0.17.8

4 years ago

0.17.6

5 years ago

0.17.4

5 years ago

0.17.5

5 years ago

0.17.3

5 years ago

0.17.2

5 years ago

0.17.1

5 years ago

0.17.0

5 years ago

0.16.25

5 years ago

0.16.24

5 years ago

0.16.23

5 years ago

0.16.22

5 years ago

0.16.21

5 years ago

0.16.20

5 years ago

0.16.19

5 years ago

0.16.18

5 years ago

0.16.17

5 years ago

0.16.16

5 years ago

0.16.15

5 years ago

0.16.14

5 years ago

0.16.13

5 years ago

0.16.12

5 years ago

0.16.11

5 years ago

0.16.10

5 years ago

0.16.9

5 years ago

0.16.8

5 years ago

0.16.7

5 years ago

0.16.6

5 years ago

0.16.5

6 years ago

0.16.4

6 years ago

0.16.3

6 years ago

0.16.2

6 years ago

0.16.1

6 years ago

0.16.0

6 years ago

0.15.1

6 years ago

0.15.0

6 years ago

0.14.2

6 years ago

0.14.1

6 years ago

0.14.0

6 years ago

0.13.10

6 years ago

0.13.9

6 years ago

0.13.8

6 years ago

0.13.7

6 years ago

0.13.6

6 years ago

0.13.5

6 years ago

0.13.4

6 years ago

0.13.3

6 years ago

0.13.2

6 years ago

0.13.1

6 years ago

0.13.0

6 years ago

0.12.2

6 years ago

0.12.1

6 years ago

0.12.0

6 years ago

0.11.0

6 years ago

0.10.10

6 years ago

0.10.9

6 years ago

0.10.8

6 years ago

0.10.7

6 years ago

0.10.6

6 years ago

0.10.5

6 years ago

0.10.4

6 years ago

0.10.3

6 years ago

0.10.2

6 years ago

0.10.1

6 years ago

0.10.0

6 years ago

0.9.0

6 years ago

0.8.9

6 years ago

0.8.8

6 years ago

0.8.7

6 years ago

0.8.6

6 years ago

0.8.5

6 years ago

0.8.4

6 years ago

0.8.3

6 years ago

0.8.2

6 years ago

0.8.1

6 years ago

0.8.0

6 years ago

0.7.4

6 years ago

0.7.3

6 years ago

0.7.2

6 years ago