1.1.6 • Published 1 day ago

bailure v1.1.6

Weekly downloads
-
License
ISC
Repository
github
Last release
1 day ago

Chronos: Learning the Language of Time Series

Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as synthetic data generated using Gaussian processes.

For details on Chronos models, training data and procedures, and experimental results, please refer to the paper Chronos: Learning the Language of Time Series.


Architecture

The models in this repository are based on the T5 architecture. The only difference is in the vocabulary size: Chronos-T5 models use 4096 different tokens, compared to 32128 of the original T5 models, resulting in fewer parameters.

ModelParametersBased on
chronos-t5-tiny8Mt5-efficient-tiny
chronos-t5-mini20Mt5-efficient-mini
chronos-t5-small46Mt5-efficient-small
chronos-t5-base200Mt5-efficient-base
chronos-t5-large710Mt5-efficient-large

Usage

To perform inference with Chronos models, install this package by running:

pip install git+https://github.com/amazon-science/chronos-forecasting.git

A minimal example showing how to perform inference using Chronos models:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from chronos import ChronosPipeline

pipeline = ChronosPipeline.from_pretrained(
  "amazon/chronos-t5-small",
  device_map="cuda",
  torch_dtype=torch.bfloat16,
)

df = pd.read_csv("https://raw.githubusercontent.com/AileenNielsen/TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv")

# context must be either a 1D tensor, a list of 1D tensors,
# or a left-padded 2D tensor with batch as the first dimension
context = torch.tensor(df["#Passengers"])
prediction_length = 12
forecast = pipeline.predict(context, prediction_length)  # shape [num_series, num_samples, prediction_length]

# visualize the forecast
forecast_index = range(len(df), len(df) + prediction_length)
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)

plt.figure(figsize=(8, 4))
plt.plot(df["#Passengers"], color="royalblue", label="historical data")
plt.plot(forecast_index, median, color="tomato", label="median forecast")
plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% prediction interval")
plt.legend()
plt.grid()
plt.show()

Citation

If you find Chronos models useful for your research, please consider citing the associated paper:

@article{ansari2024chronos,
  author  = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
  title   = {Chronos: Learning the Language of Time Series},
  journal = {arXiv preprint arXiv:2403.07815},
  year    = {2024}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.