csv-string v4.1.1
Javascript CSV Strings
Parse and Stringify for CSV strings.
- API similar to the JSON parser (
CSV.parseandCSV.stringify). - Can also work row by row.
- Can also be used to parse strings from readable streams (e.g. file streams).
- Tolerant with the weird data
- Written in TypeScript
import * as CSV from 'csv-string';
// with String
const arr = CSV.parse('a,b,c\na,b,c');
const str = CSV.stringify(arr);
// with Stream
const stream = CSV.createStream();
stream.on('data', rows => {
process.stdout.write(CSV.stringify(rows, ','));
});
process.stdin.pipe(stream);Contributors
- Kael Shipman
- Mehul Mohan
- Hossam Magdy
- Rich
- Rick Huizinga
- Nicolas Thouvenin
- Stéphane Gully
- J. Baumbach
- Sam Hauglustaine
- Rick Huizinga
- doleksy1
- François Parmentier
Installation
using npm:
npm install csv-stringor yarn
yarn add csv-stringAPI Documentation
parse(input: String, options: Object): Object
parse(input: string, separator: string, quote: string): Object
Converts a CSV string input to array output.
Options :
commaString to indicate the CSV separator. (optional, default,)quoteString to indicate the CSV quote if need. (optional, default")outputString choose 'objects' or 'tuples' to change output for Array or Object. (optional, defaulttuples)
Example 1 :
const CSV = require('csv-string');
const parsedCsv = CSV.parse('a;b;c\nd;e;f', ';');
console.log(parsedCsv);Output:
[
["a", "b", "c"],
["d", "e", "f"]
]Example 2 :
const CSV = require('csv-string');
const parsedCsv = CSV.parse('a,b,c\n1,2,3\n4,5,6', { output: 'objects' });
console.log(parsedCsv);Output:
[
{ a: '1', b: '2', c: '3' },
{ a: '4', b: '5', c: '6' }
]If separator parameter is not provided, it is automatically detected.
stringify(input: Object, separator: string): string
Converts object input to a CSV string.
import * as CSV from 'csv-string';
console.log(CSV.stringify(['a', 'b', 'c']));
console.log(
CSV.stringify([
['c', 'd', 'e'],
['c', 'd', 'e']
])
);
console.log(CSV.stringify({ a: 'e', b: 'f', c: 'g' }));Output:
a,b,c
c,d,e
c,d,e
e,f,gdetect(input: string): string
Detects the best separator.
import * as CSV from 'csv-string';
console.log(CSV.detect('a,b,c'));
console.log(CSV.detect('a;b;c'));
console.log(CSV.detect('a|b|c'));
console.log(CSV.detect('a\tb\tc'));Output:
,
;
|
\tforEach(input: string, sep: string, quo: string, callback: function)
forEach(input: string, sep: string, callback: function)
forEach(input: string, callback: function)
callback(row: array, index: number): void
Calls callback for each CSV row/line. The Array passed to callback contains the fields of the current row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
CSV.forEach(data, ',', function (row, index) {
console.log('#' + index + ' : ', row);
});Output:
#0 : [ 'a', 'b', 'c' ]
#1 : [ 'd', 'e', 'f' ]read(input: string, sep: string, quo: string, callback: function): number
read(input: string, sep: string, callback: function): number
read(input: string, callback: function): number
callback(row: array): void
Calls callback when a CSV row is read. The Array passed to callback contains the fields of the row.
Returns the first offset after the row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
const index = CSV.read(data, ',', row => {
console.log(row);
});
console.log(data.slice(index));Output:
[ 'a', 'b', 'c' ]
d,e,freadAll(input: string, sep: string, quo: string, callback: function): number
readAll(input: string, sep: string, callback: function): number
readAll(input: string, callback: function): number
callback(rows: array): void
Calls callback when all CSV rows are read. The Array passed to callback contains the rows of the file.
Returns the offset of the end of parsing (generally it's the end of the input string).
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
const index = CSV.readAll(data, row => {
console.log(row);
});
console.log('-' + data.slice(index) + '-');Output:
[ [ 'a', 'b', 'c' ], [ 'd', 'e', 'f' ] ]
--readChunk(input: string, sep: string, quo: string, callback: function): number
readChunk(input: string, sep: string, callback: function): number
readChunk(input: string, callback: function): number
callback(rows: array): void
Calls callback when all CSV rows are read. The last row could be ignored, because the remainder could be in another chunk.
The Array passed to callback contains the rows of the file.
Returns the offset of the end of parsing. If the last row is ignored, the offset will point to the beginnning of the row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e';
const index = CSV.readChunk(data, row => {
console.log(row);
});
console.log('-' + data.slice(index) + '-');Output:
[ [ 'a', 'b', 'c' ] ]
--createStream(options: Object): WritableStream
createStream(): WritableStream
Create a writable stream for CSV chunk. Options are :
- separator : To indicate the CSV separator. By default is auto (see the detect function)
- quote** : To indicate the CSVquote.
Example : Read CSV file from the standard input.
const stream = CSV.createStream();
stream.on('data', row => {
console.log(row);
});
process.stdin.resume();
process.stdin.setEncoding('utf8');
process.stdin.pipe(stream);Contribution
cloneyarn install- ... do the changes, write tests
yarn test(ensure all tests pass)yarn bench(to check the performance impact)
Related projects
- https://npmjs.org/browse/keyword/csv
- http://www.uselesscode.org/js/csv/
- https://github.com/archan937/csonv.js
Benchmark
There is a quite basic benchmark to compare this project to other related ones, using file streams as input. See ./bench for source code.
the test
yarn benchthe result
for a test file with 949,044 rows
| Package | Time | Output/Input similarity |
|---|---|---|
| a-csv | 6.01s | ~99% |
| csv-stream | 6.64s | ~73% |
| csv-streamer | 7.03s | ~79% |
| csv-string | 6.53s | 100% |
| fast-csv | 12.33s | 99.99% |
| nodecsv | 7.10s | 100% |
License
3 years ago
4 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
7 years ago
7 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
9 years ago
9 years ago
11 years ago
11 years ago
11 years ago
11 years ago
11 years ago
11 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
12 years ago
13 years ago
13 years ago
13 years ago
13 years ago
