distributions-truncated-normal-pdf v0.0.0
Probability Density Function
Truncated normal distribution probability density function (PDF).
The distribution of a normally distributed random variable X conditional on a < X < b  is a truncated normal distribution.
The probability density function (PDF) for a truncated normal random variable is
where Phi and phi denote the cumulative distribution function and density function of the normal distribution, respectively, mu is the location  and sigma > 0 is the scale parameter of the distribution. a and b are the minimum and maximum support.
Installation
$ npm install distributions-truncated-normal-pdfFor use in the browser, use browserify.
Usage
var pdf = require( 'distributions-truncated-normal-pdf' );pdf( x, options )
Evaluates the probability density function (PDF) for the truncated normal distribution. x may be either a number, an array, a typed array, or a matrix.
var matrix = require( 'dstructs-matrix' ),
	mat,
	out,
	x,
	i;
out = pdf( 1 );
// returns 0.242
out = pdf( -1 );
// returns 0.242
x = [ 0, 0.5, 1, 1.5, 2, 2.5 ];
out = pdf( x );
// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054, ~0.018 ]
x = new Float32Array( x );
out = pdf( x );
// returns Float64Array( [~0.399,~0.352,~0.242,0.13,~0.054,~0.018] )
x = new Float64Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i*0.5;
}
mat = matrix( x, [3,2], 'float64' );
/*
	[ 0 0.5
	  1 1.5
	  2 2.5 ]
*/
out = pdf( mat );
/*
	[ ~0.399 ~0.352
	  ~0.242 0.13
	  ~0.054 ~0.018 ]
*/The function accepts the following options:
- a: minimum support. Default: -Infinity
- b: maximum support. Default: +Infinity
- mu: location parameter. Default: 0.
- sigma: scale parameter. Default: 1.
- __accessor__: accessor `function` for accessing `array` values.
- __dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`.
- copy: booleanindicating if thefunctionshould return a new data structure. Default:true.
- path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default: '.'.
A truncated normal distribution is a function of four parameters: a and b, the minimum and maximum support, mu(location parameter) and sigma > 0(scale parameter). By default, a = -Infinity and b = +Infinity, mu is equal to 0 and sigma is equal to 1. To adjust either parameter, set the corresponding option.
var x = [ 0, 0.5, 1, 1.5, 2, 2.5 ];
var out = pdf( x, {
	'a': -5,
	'b': 5,
	'mu': 2,
	'sigma': 2,
});
// returns [ 0.13, ~0.161, ~0.189, ~0.207, ~0.214, ~0.207 ]For non-numeric arrays, provide an accessor function for accessing array values.
var data = [
	[0,0],
	[1,0.5],
	[2,1],
	[3,1.5],
	[4,2],
	[5,2.5]
];
function getValue( d, i ) {
	return d[ 1 ];
}
var out = pdf( data, {
	'accessor': getValue
});
// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054, ~0.018 ]To deepset an object array, provide a key path and, optionally, a key path separator.
var data = [
	{'x':[0,0]},
	{'x':[1,0.5]},
	{'x':[2,1]},
	{'x':[3,1.5]},
	{'x':[4,2]},
	{'x':[5,2.5]}
];
var out = pdf( data, {
	'path': 'x/1',
	'sep': '/'
});
/*
	[
		{'x':[0,~0.399]},
		{'x':[1,~0.352]},
		{'x':[2,~0.242]},
		{'x':[3,0.13]},
		{'x':[4,~0.054]},
		{'x':[5,~0.018]}
	]
*/
var bool = ( data === out );
// returns trueBy default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).
var x, out;
x = new Int8Array( [0,1,2,3,4] );
out = pdf( x, {
	'mu': 2,
	'sigma': 2,
	'dtype': 'int32'
});
// returns Int32Array( [0,0,0,0,0] )
// Works for plain arrays, as well...
out = pdf( [0,0.5,1,1.5,2], {
	'mu': 2,
	'sigma': 2,
	'dtype': 'uint8'
});
// returns Uint8Array( [0,0,0,0,0] )By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.
var bool,
	mat,
	out,
	x,
	i;
x = [ 0, 0.5, 1, 1.5, 2 ];
out = pdf( x, {
	'copy': false
});
// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054 ]
bool = ( x === out );
// returns true
x = new Int16Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i*0.5;
}
mat = matrix( x, [3,2], 'float32' );
/*
	[ 0 0
	  1 1
	  2 2 ]
*/
out = pdf( mat, {
	'copy': false
});
/*
	[ ~0.399 ~0.399
	  ~0.242 ~0.242
	  ~0.054 ~0.054 ]
*/
bool = ( mat === out );
// returns trueNotes
- If an element is not a numeric value, the evaluated PDF is - NaN.- var data, out; out = pdf( null ); // returns NaN out = pdf( true ); // returns NaN out = pdf( {'a':'b'} ); // returns NaN out = pdf( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } data = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = pdf( data, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = pdf( data, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
- Be careful when providing a data structure which contains non-numeric elements and specifying an - integeroutput data type, as- NaNvalues are cast to- 0.- var out = pdf( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] );
Examples
var pdf = require( 'distributions-truncated-normal-pdf' ),
	matrix = require( 'dstructs-matrix' );
var data,
	mat,
	out,
	tmp,
	i;
// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = -2.5 + i * 0.5;
}
out = pdf( data );
// Object arrays (accessors)...
function getValue( d ) {
	return d.x;
}
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': data[ i ]
	};
}
out = pdf( data, {
	'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': [ i, data[ i ].x ]
	};
}
out = pdf( data, {
	'path': 'x/1',
	'sep': '/'
});
// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = -2.5 + i * 0.5;
}
out = pdf( data );
// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = pdf( mat );
// Matrices (custom output data type)...
out = pdf( mat, {
	'dtype': 'uint8'
});To run the example code from the top-level application directory,
$ node ./examples/index.jsTests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make testAll new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-covIstanbul creates a ./reports/coverage directory. To access an HTML version of the report,
$ make view-covLicense
Copyright
Copyright © 2016. The Compute.io Authors.
10 years ago