distributions-uniform-cdf v0.0.0
Cumulative Distribution Function
Uniform distribution cumulative distribution function.
The cumulative distribution function for a continuous uniform random variable is
where a is the minimum support and b is the maximum support. The parameters must satisfy a < b.
Installation
$ npm install distributions-uniform-cdfFor use in the browser, use browserify.
Usage
var cdf = require( 'distributions-uniform-cdf' );cdf( x, options )
Evaluates the cumulative distribution function for the continuous uniform distribution. x may be either a number, an array, a typed array, or a matrix.
var matrix = require( 'dstructs-matrix' ),
	mat,
	out,
	x,
	i;
out = cdf( 1 );
// returns 1
x = [ -0.1, 0.1, 0.2, 0.3, 0.4 ];
out = cdf( x );
// returns [ 0, 0.1, 0.2, 0.3, 0.4 ]
x = new Float32Array( x );
out = cdf( x );
// returns Float64Array( [0,0.1,0.2,0.3,0.4] )
x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i / 6 ;
}
mat = matrix( x, [3,2], 'float32' );
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/
out = cdf( mat );
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/The function accepts the following options:
- a: minimum support. Default: 0.
- b: maximum support. Default: 1.
- __accessor__: accessor `function` for accessing `array` values.
- __dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`.
- copy: booleanindicating if thefunctionshould return a new data structure. Default:true.
- path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default: '.'.
A continuous uniform distribution is a function of two parameters: a(minimum support) and b(maximum support). By default, a is equal to 0 and b is equal to 1. To adjust either parameter, set the corresponding option.
var x = [ -4, -2, 0, 2, 4 ];
var out = cdf( x, {
	'a': -3,
	'b': 3
});
// returns [ 0, 1/6, 0.5, 5/6, 1 ]For non-numeric arrays, provide an accessor function for accessing array values.
var data = [
	[0,-4],
	[1,-2],
	[2,0],
	[3,2],
	[4,4],
];
function getValue( d, i ) {
	return d[ 1 ];
}
var out = cdf( data, {
	'accessor': getValue,
	'a': -3,
	'b': 3
});
// returns [ 0, 1/6, 0.5, 5/6, 1 ]To deepset an object array, provide a key path and, optionally, a key path separator.
var data = [
	{'x':[0,-4]},
	{'x':[1,-2]},
	{'x':[2,0]},
	{'x':[3,2]},
	{'x':[4,4]},
];
var out = cdf( data, {
	'path': 'x/1',
	'sep': '/',
	'a': -3,
	'b': 3
});
/*
	[
		{'x':[0,0]},
		{'x':[1,1/6]},
		{'x':[2,0.5]},
		{'x':[3,5/6]},
		{'x':[4,1]},
	]
*/
var bool = ( data === out );
// returns trueBy default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).
var x, out;
x = new Float64Array( [-4,-2,0,2,4] );
out = cdf( x, {
	'dtype': 'float32',
	'a': -3,
	'b': 3
});
// returns Float32Array( [0,1/6,0.5,5/6,1] )
// Works for plain arrays, as well...
out = cdf( [-4,-2,0,2,4], {
	'dtype': 'float32',
	'a': -3,
	'b': 3
});
// returns Float32Array( [0,1/6,0.5,5/6,1] )By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.
var bool,
	mat,
	out,
	x,
	i;
x = [ -0.1, 0.1, 0.2, 0.3, 0.4 ];
out = cdf( x, {
	'copy': false
});
// returns [ 0, 0.1, 0.2, 0.3, 0.4 ]
bool = ( x === out );
// returns true
x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i / 6;
}
mat = matrix( x, [3,2], 'float32' );
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/
out = cdf( mat, {
	'copy': false
});
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/
bool = ( mat === out );
// returns trueNotes
- If an element is not a numeric value, the evaluated cumulative distribution function is - NaN.- var data, out; out = cdf( null ); // returns NaN out = cdf( true ); // returns NaN out = cdf( {'a':'b'} ); // returns NaN out = cdf( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } data = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = cdf( data, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = cdf( data, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
Examples
var cdf = require( 'distributions-uniform-cdf' ),
	matrix = require( 'dstructs-matrix' );
var data,
	mat,
	out,
	tmp,
	i;
// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = ( i + 1 ) / 10;
}
out = cdf( data );
// Object arrays (accessors)...
function getValue( d ) {
	return d.x;
}
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': data[ i ]
	};
}
out = cdf( data, {
	'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': [ i, data[ i ].x ]
	};
}
out = cdf( data, {
	'path': 'x/1',
	'sep': '/'
});
// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = ( i + 1 ) / 10;
}
out = cdf( data );
// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = cdf( mat );
// Matrices (custom output data type)...
out = cdf( mat, {
	'dtype': 'uint8'
});To run the example code from the top-level application directory,
$ node ./examples/index.jsTests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make testAll new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-covIstanbul creates a ./reports/coverage directory. To access an HTML version of the report,
$ make view-covLicense
Copyright
Copyright © 2015. The Compute.io Authors.
10 years ago