ml-matrix v6.12.1
ml-matrix
Matrix manipulation and computation library.
Installation
$ npm install ml-matrix
Usage
As an ES module
import { Matrix } from 'ml-matrix';
const matrix = Matrix.ones(5, 5);
As a CommonJS module
const { Matrix } = require('ml-matrix');
const matrix = Matrix.ones(5, 5);
API Documentation
Examples
Standard operations
const { Matrix } = require('ml-matrix');
var A = new Matrix([
[1, 1],
[2, 2],
]);
var B = new Matrix([
[3, 3],
[1, 1],
]);
var C = new Matrix([
[3, 3],
[1, 1],
]);
Operations
const addition = Matrix.add(A, B); // addition = Matrix [[4, 4], [3, 3], rows: 2, columns: 2]
const subtraction = Matrix.sub(A, B); // subtraction = Matrix [[-2, -2], [1, 1], rows: 2, columns: 2]
const multiplication = A.mmul(B); // multiplication = Matrix [[4, 4], [8, 8], rows: 2, columns: 2]
const mulByNumber = Matrix.mul(A, 10); // mulByNumber = Matrix [[10, 10], [20, 20], rows: 2, columns: 2]
const divByNumber = Matrix.div(A, 10); // divByNumber = Matrix [[0.1, 0.1], [0.2, 0.2], rows: 2, columns: 2]
const modulo = Matrix.mod(B, 2); // modulo = Matrix [[1, 1], [1, 1], rows: 2, columns: 2]
const maxMatrix = Matrix.max(A, B); // max = Matrix [[3, 3], [2, 2], rows: 2, columns: 2]
const minMatrix = Matrix.min(A, B); // max = Matrix [[1, 1], [1, 1], rows: 2, columns: 2]
Inplace Operations
C.add(A); // => C = C + A
C.sub(A); // => C = C - A
C.mul(10); // => C = 10 * C
C.div(10); // => C = C / 10
C.mod(2); // => C = C % 2
Math Operations
// Standard Math operations: (abs, cos, round, etc.)
var A = new Matrix([
[ 1, 1],
[-1, -1],
]);
var exponential = Matrix.exp(A); // exponential = Matrix [[Math.exp(1), Math.exp(1)], [Math.exp(-1), Math.exp(-1)], rows: 2, columns: 2].
var cosinus = Matrix.cos(A); // cosinus = Matrix [[Math.cos(1), Math.cos(1)], [Math.cos(-1), Math.cos(-1)], rows: 2, columns: 2].
var absolute = Matrix.abs(A); // absolute = Matrix [[1, 1], [1, 1], rows: 2, columns: 2].
// Note: you can do it inplace too as A.abs()
Available Methods:
abs, acos, acosh, asin, asinh, atan, atanh, cbrt, ceil, clz32, cos, cosh, exp, expm1, floor, fround, log, log1p, log10, log2, round, sign, sin, sinh, sqrt, tan, tanh, trunc
Manipulation of the matrix
// remember: A = Matrix [[1, 1], [-1, -1], rows: 2, columns: 2]
var numberRows = A.rows; // A has 2 rows
var numberCols = A.columns; // A has 2 columns
var firstValue = A.get(0, 0); // get(rows, columns)
var numberElements = A.size; // 2 * 2 = 4 elements
var isRow = A.isRowVector(); // false because A has more than 1 row
var isColumn = A.isColumnVector(); // false because A has more than 1 column
var isSquare = A.isSquare(); // true, because A is 2 * 2 matrix
var isSym = A.isSymmetric(); // false, because A is not symmetric
A.set(1, 0, 10); // A = Matrix [[1, 1], [10, -1], rows: 2, columns: 2]. We have changed the second row and the first column
var diag = A.diag(); // diag = [1, -1] (values in the diagonal)
var m = A.mean(); // m = 2.75
var product = A.prod(); // product = -10 (product of all values of the matrix)
var norm = A.norm(); // norm = 10.14889156509222 (Frobenius norm of the matrix)
var transpose = A.transpose(); // transpose = Matrix [[1, 10], [1, -1], rows: 2, columns: 2]
Instantiation of matrix
var z = Matrix.zeros(3, 2); // z = Matrix [[0, 0], [0, 0], [0, 0], rows: 3, columns: 2]
var z = Matrix.ones(2, 3); // z = Matrix [[1, 1, 1], [1, 1, 1], rows: 2, columns: 3]
var z = Matrix.eye(3, 4); // z = Matrix [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], rows: 3, columns: 4]. there are 1 only in the diagonal
Maths
const {
Matrix,
inverse,
solve,
linearDependencies,
QrDecomposition,
LuDecomposition,
CholeskyDecomposition,
EigenvalueDecomposition,
} = require('ml-matrix');
Inverse and Pseudo-inverse
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);
var inverseA = inverse(A);
var B = A.mmul(inverseA); // B = A * inverse(A), so B ~= Identity
// if A is singular, you can use SVD :
var A = new Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]);
// A is singular, so the standard computation of inverse won't work (you can test if you don't trust me^^)
var inverseA = inverse(A, (useSVD = true)); // inverseA is only an approximation of the inverse, by using the Singular Values Decomposition
var B = A.mmul(inverseA); // B = A * inverse(A), but inverse(A) is only an approximation, so B doesn't really be identity.
// if you want the pseudo-inverse of a matrix :
var A = new Matrix([
[1, 2],
[3, 4],
[5, 6],
]);
var pseudoInverseA = A.pseudoInverse();
var B = A.mmul(pseudoInverseA).mmul(A); // with pseudo inverse, A*pseudo-inverse(A)*A ~= A. It's the case here
Least square
Least square is the following problem: We search for x
, such that A.x = B
(A
, x
and B
are matrix or vectors).
Below, how to solve least square with our function
// If A is non singular :
var A = new Matrix([
[3, 1],
[4.25, 1],
[5.5, 1],
[8, 1],
]);
var B = Matrix.columnVector([4.5, 4.25, 5.5, 5.5]);
var x = solve(A, B);
var error = Matrix.sub(B, A.mmul(x)); // The error enables to evaluate the solution x found.
// If A is non singular :
var A = new Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]);
var B = Matrix.columnVector([8, 20, 32]);
var x = solve(A, B, (useSVD = true)); // there are many solutions. x can be [1, 2, 1].transpose(), or [1.33, 1.33, 1.33].transpose(), etc.
var error = Matrix.sub(B, A.mmul(x)); // The error enables to evaluate the solution x found.
Decompositions
QR Decomposition
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);
var QR = new QrDecomposition(A);
var Q = QR.orthogonalMatrix;
var R = QR.upperTriangularMatrix;
// So you have the QR decomposition. If you multiply Q by R, you'll see that A = Q.R, with Q orthogonal and R upper triangular
LU Decomposition
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);
var LU = new LuDecomposition(A);
var L = LU.lowerTriangularMatrix;
var U = LU.upperTriangularMatrix;
var P = LU.pivotPermutationVector;
// So you have the LU decomposition. P includes the permutation of the matrix. Here P = [1, 2, 0], i.e the first row of LU is the second row of A, the second row of LU is the third row of A and the third row of LU is the first row of A.
Cholesky Decomposition
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);
var cholesky = new CholeskyDecomposition(A);
var L = cholesky.lowerTriangularMatrix;
Eigenvalues & eigenvectors
var A = new Matrix([
[2, 3, 5],
[4, 1, 6],
[1, 3, 0],
]);
var e = new EigenvalueDecomposition(A);
var real = e.realEigenvalues;
var imaginary = e.imaginaryEigenvalues;
var vectors = e.eigenvectorMatrix;
Linear dependencies
var A = new Matrix([
[2, 0, 0, 1],
[0, 1, 6, 0],
[0, 3, 0, 1],
[0, 0, 1, 0],
[0, 1, 2, 0],
]);
var dependencies = linearDependencies(A);
// dependencies is a matrix with the dependencies of the rows. When we look row by row, we see that the first row is [0, 0, 0, 0, 0], so it means that the first row is independent, and the second row is [ 0, 0, 0, 4, 1 ], i.e the second row = 4 times the 4th row + the 5th row.
License
3 months ago
8 months ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
7 years ago
7 years ago
7 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
11 years ago