6.2.0 • Published 1 year ago
ml-regression v6.2.0
ml-regression
Regression algorithms.
Installation
$ npm install ml-regression
Examples
Simple linear regression
const SLR = require("ml-regression").SLR;
let inputs = [80, 60, 10, 20, 30];
let outputs = [20, 40, 30, 50, 60];
let regression = new SLR(inputs, outputs);
regression.toString(3) === "f(x) = - 0.265 * x + 50.6";External links
Check this cool blog post for a detailed example: https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5
Polynomial regression
const PolynomialRegression = require("ml-regression").PolynomialRegression;
const x = [50, 50, 50, 70, 70, 70, 80, 80, 80, 90, 90, 90, 100, 100, 100];
const y = [
3.3, 2.8, 2.9, 2.3, 2.6, 2.1, 2.5, 2.9, 2.4, 3.0, 3.1, 2.8, 3.3, 3.5, 3.0,
];
const degree = 5; // setup the maximum degree of the polynomial
const regression = new PolynomialRegression(x, y, degree);
console.log(regression.predict(80)); // Apply the model to some x value. Prints 2.6.
console.log(regression.coefficients); // Prints the coefficients in increasing order of power (from 0 to degree).
console.log(regression.toString(3)); // Prints a human-readable version of the function.
console.log(regression.toLaTeX());License
6.1.0
1 year ago
6.2.0
1 year ago
5.0.0
6 years ago
4.4.2
8 years ago
4.4.1
8 years ago
4.4.0
8 years ago
4.3.0
9 years ago
4.2.1
9 years ago
4.2.0
9 years ago
4.1.1
9 years ago
4.1.0
9 years ago
4.0.1
9 years ago
4.0.0
10 years ago
3.1.1
10 years ago
3.1.0
10 years ago
3.0.0
10 years ago
2.0.0
10 years ago
1.1.1
10 years ago
1.1.0
10 years ago
1.0.0
10 years ago