3.1.8 • Published 5 years ago
point-cluster v3.1.8
point-cluster
Point clustering for 2D spatial indexing. Incorporates optimized quad-tree data structure.
const cluster = require('point-cluster')
let ids = cluster(points)
// get point ids in the indicated range
let selectedIds = ids.range([10, 10, 20, 20])
// get levels of details: list of ids subranges for rendering purposes
let lod = ids.range([10, 10, 20, 20], { lod: true })
API
ids = cluster(points, options?)
Create index for the set of 2d points
based on options
.
points
is an array of[x,y, x,y, ...]
or[[x,y], [x,y], ...]
coordinates.ids
is Uint32Array with point ids sorted by zoom levels, suitable for WebGL buffer, subranging or alike.options
Option | Default | Description |
---|---|---|
bounds | 'auto' | Data range, if different from points bounds, eg. in case of subdata. |
depth | 256 | Max number of levels. Points below the indicated level are grouped into single level. |
output | 'array' | Output data array or data format. For available formats see dtype. |
<!-- node | 1 | Min size of node, ie. tree traversal is stopped once the node contains less than the indicated number of points. --> |
<!-- sort | 'z' | Sort values within levels by x -, y -coordinate, z -curve or r - point radius. z is the fastest for init, x or y are faster for lod and r is the most data-relevant. --> |
<!-- pick | 'first' | 'first' , 'last' or a function, returning point id for the level. --> |
result = ids.range(box?, options?)
Get point ids from the indicated range.
box
can be any rectangle object, eg.[l, t, r, b]
, see parse-rect.options
Option | Default | Description |
---|---|---|
lod | false | Makes result a list of level details instead of ids, useful for obtaining subranges to render. |
px | 0 | Min pixel size in data dimension (number or [width, height] couple) to search for, to ignore lower levels. |
level | null | Max level to limit search. |
let levels = ids.range([0,0, 100, 100], { lod: true, d: dataRange / canvas.width })
levels.forEach([from, to] => {
// offset and count point to range in `ids` array
render( ids.subarray( from, to ) )
})
Related
- snap-points-2d − grouping points by pixels.
- kdgrass − minimal kd-tree implementation.
- regl-scatter2d − highly performant scatter2d plot.
License
© 2017 Dmitry Yv. MIT License
Development supported by plot.ly.
3.1.8
5 years ago
3.1.7
5 years ago
3.1.6
5 years ago
3.1.5
6 years ago
3.1.4
7 years ago
3.1.3
7 years ago
3.1.2
7 years ago
3.1.1
7 years ago
3.1.0
7 years ago
3.0.3
7 years ago
3.0.2
7 years ago
3.0.1
7 years ago
3.0.0
7 years ago
2.2.0
7 years ago
2.1.1
7 years ago
2.1.0
7 years ago
2.0.0
7 years ago
1.0.2
7 years ago
1.0.1
7 years ago
1.0.0
7 years ago